
MATHEMATICS OF COMPUTATION 
VOLUME 43, NUMBER 167 
JULY 1984, PAGES 29-46 

Numerical Analysis of the Exterior Boundary Value 
Problem for the Time-Harmonic Maxwell Equations 

by a Boundary Finite Element Method 
Part 1: The Continuous Problem 

By A. Bendali 

Abstract. A general finite element method is applied to compute the skin currents flowing on a 
perfectly conducting surface when it is illuminated by a time-harmonic incident electromag- 
netic wave. In this paper, we introduce and study the framework in which the continuous 
problem can be stated in order to make possible the numerical analysis which will follow in a 
second part. 

0. Introduction. The determination of the diffracted field by a perfectly conducting 
obstacle F (which is supposed here to be the smooth boundary of a bounded open 
domain i2') is reduced to that of the surface currents] and charges p on F (cf. e.g. 
[11], [15], [22]) which satisfy the integral equation 

(0.1) IIt- grad v + iwla} =a on F. 

II is the orthogonal projection on the tangent plane of F; 1GnC is the electric part of 
the incident electromagnetic wave; - and IA are the characteristic constants of the 
medium in which F is embedded. The time variation is supposed to be e-iwt and is 
suppressed by linearity; v and a are respectively the scalar and the vector potential of 
the electric field diffracted by F, respectively created by the surface charges p and 
the surface currentsj: 

(0.2) v(x) = JG(x, y)p(y) dy(y), 

(0.3) a(x) = JG(x, y)j(y) dy(y). 

e iklx-Yv 
(0.4) G(x, y) =47lx - y 

is the kernel giving the outgoing solutions of the Helmholtz equation; 

(0.5) k= E- 

is the wave number. 
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Finally, the currents jand the charges p induced by the incident field gFnc on F are 
linked by the conservation law 

(0.6) divrj= hop, 

where divr] is the surface divergence of the tangential fieldj of F. 
Rumsey [19] proposed the concept of reaction between two systems of electromag- 

netic sources in order to replace Eq. (0.1) by the following variational equation 

(0.7) r e grad v + i oIA, q) dy = qf(-nc 4) dy 

for all tangential fields q. In the sequel, (*,) will denote the Hermitian product of 
two vectors with three complex components. 

Sankar and Tong [20] used the formulation (0.7) together with the gauge relation 

(0.8) diva=iwv 

to treat the case where F is a metallic plate. An important remark about this 
formulation is that it is not difficult to deal with the case of open surfaces. It is 
sufficient to impose on the unknown currents j and on the test currents q not to have 
any normal component to the boundary curve aF of F. This is not the case with the 
magnetic integral equation also called the Maue equation; cf. e.g. [22]. However, the 
method proposed by Sankar and Tong is too restrictive since it cannot take into 
account arbitrarily shaped surfaces. Moreover, they do not elucidate the way the 
singularity l/lx - yl3, which appears in this formulation, is numerically handled. 

Harrington and Mautz, in a series of papers (cf. [9]) proposed to carry out the 
integration by parts 

(0.9) f (grad v, 4) d y = f(grad r v 4 q ) dY = - v divr q dy y 

where gradr is the surface gradient of a function defined on r. Equation (0.7) 
together with the conservation law (0.6) leads then to the problem 

Find a tangential fieldj on F such that, for all tangential fields q of F, 

(0.10) |f |r G(x, y){- divrf(y) divrq(x) + (j(y) q(x))} dy(x) dy(y) 

- f _ (eincl q4) dy. 

An important feature of the above problem must be pointed out: in the equation, 
there appears only the kernel G and not its derivatives. Thus the integrals remain 
weakly singular. 

It seems that Harrington and Mautz were faced with the construction of a 
conforming finite element space of currents on F (in physical terms a space for 
which there do not exist line or vertex charges). This is the reason why, as far as we 
know, they only treat bidimensional and axisymmetric problems by the formulation 
(0.10). 

Recently, Rao et. al [16] proposed the following method. The surface is replaced 
by an approximate polyhedral surface Fh formed by a juxtaposition of planar 
triangles. The currents and the charges are then determined by the mixed finite 
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element method of the lowest order, where the currents flowing across any edge and, 
consequently, the charges over any triangle are supposed to be constant. This 
method was actually introduced by Raviart and Thomas [17] for solving the mixed 
formulation of the Poisson equation in a domain in the plane. It was next used by 
Nedelec [13] for the computation of eddy currents on a surface of R3. As shown 
in [2], Rao's method can be generalized, in light of the work of Raviart and Thomas, 
to a method of arbitrary order, if F is a polyhedral. However, in the case where F is 
a curved surface, if the directions of the tangent plane are not correctly approxi- 
mated (i.e. if they are only approximated by the directions of the plane triangle), we 
have a loss of one convergence order. A similar problem arises in double layer 
potential formulations which require the interpolation of the normal (cf. [18]). 

However, as far as we know, up to now nobody has treated the numerical analysis 
of the problem (i.e. the existence and uniqueness of the solution of the approximate 
problem and error estimates.) This will be the subject of this work,divided into two 
parts. In this first part, we state the boundary value problem which leads to Eq. 
(0.1). We recall the existence and uniqueness results for this problem (cf. [1]) and 
give the regularity properties of its solution. This enables us to state the variational 
equation (0.10) in a suitable framework. Finally, we give some coerciveness estimates 
on which the numerical analysis developed in the second part of this work will be 
based. 

There exist other methods of discretization of the problem of scattering an 
electromagnetic wave by a perfectly conducting obstacle. A comprehensive account 
of these methods and relevant references may be found in [15] and [16]. It must be 
emphasized that the list of references given above is by no means complete. We only 
tried to illustrate some of the important features of the method which will be 
discussed. 

1. Review of Some Facts About Boundary Value Problems. 
1.1. Notation and Spaces. O' is a bounded open subset of R3. Its boundary F is a 

smooth (i.e. CI) surface of R3. 2i' lies locally on one side of F and is such that the 
exterior domain 9 e = R3 \ i2' is connected. We suppose that W2 is also connected (the 
case where i2i is not connected differs only by some inessential details in the proofs). 
Hence, F is also the boundary of Se and is connected. We shall denote by n' the field 
formed by the unit normal to F outwardly directed to W2'. One can see (cf. e.g. [4]) 
that the field n can be extended to R3 to define a C' field, also called n', and 
compactly supported, such that inl=- 1 in a neighborhood of r. In the sequel, a 
represents either O2' or le for any purpose which does not need the boundedness of 
the domain; n' is then the unit normal to F outwardly directed to a2. 

For s E R, we denote by Hs(Q2) (resp. Hs(r)) the space formed by the fields u 
with complex components which belong to HS(i) (resp. HS(F)). HS(9) (resp. 
HS(F)) is identified, for any fixed orthonormal basis { el e, e3 4 to { Hs(s2)43 (resp. 
{ Hs(F)3 ), by 
(1 .1) iU = u%i; ui E Hs(g) (resp. Hs(F)). 

We shall always take the usual convention of tensorial calculus of summing over 
the repeated indices. As a rule, latin indices go from 1 to 3, while greek ones take the 
values 1 or 2. 



32 A. BENDALI 

Hs(i) (resp. HS(F)) denotes the usual Sobolev space (cf. [10]). For u in Hs(Q), by 

the decomposition (1.1), we can use the norm notation 

(1.2) 111s,Q= (E Lluil's,) 
i=l 

and similar notations for 1Ju- z1sr and for the seminorm J tj iK' if m is a nonnegative 
integer and K a measurable subset of Q or F. Iluills 2 is the usual norm of u' in 
Hs(Q). 

The inner product of two vectors a = a ei and b = be'i is denoted by 
3 

(1.3) (a ,b) =Eaibi. 
i=l 

a A b denotes the usual vectorial product. 
Using the stability of Sobolev spaces with respect to the multiplication by Cx 

functions, we can decompose Hs(F) into two subspaces respectively generated by 
the tangential fields to F and the normal fields to F. We have 

(1.4) p I +(p n)n; 

(1.5) NHs(F) = {-p E Hs(F):p= vn; v E Hs(F)}; 

(1.6) THs(F) = {- E Hs(F): (jp, n) = O}; 

(1.7) Hs(F) = THs(F) ED NHs(F). 

This last direct sum is also an orthogonal decomposition if Hs( F) is equipped with a 

suitable norm. 
If X is a Hilbert space, X' denotes the space of all antilinear bounded forms on X. 

(1, v)x ,,x denotes the duality pairing between X and X'. Nevertheless, to simplify 
the notations, we shall omit X and X' if there is no risk of confusion. 

Finally, the usual identifications of duality of Sobolev spaces enable us to take 

(1.8) {THs(F)}' = TH-s(F); { NHs(F)}' = NH-s(F). 

We shall use the following Frechet spaces (cf. [23]): 

H?s(Qe) = {f 
- {9-(ne)}3: eu E Hs(Qe) vq E _9(R3)} 

Ht (,A, K2e) = { Ue HL c(Qe) I\U e L20o((2e)1} 

Recall that Alu = grad div u - curl curl ui is given by Alu = (A u') e when ui is in the 

form (1.1). H'(L, ?Q) being defined in a similar way, one can follow [10] to define, 
for ud in H' (A, Q2), the traces curl u A n' and yo(div u), respectively, in TH-1/2(F) 

and H-1/2(F). This definition uses the surjectivity, the trace operator from H1(Q) 
onto H1/2(F), the density of the space of smooth functions in H1(L\, Q) and the 

following Green's formula which holds for sufficiently smooth ui and v+: 

(1.9) f{(\u, v) + (curl u, curl ) + div u div vJ} dx 

= f {(curlau A n, v) + (n-, )yodiv '} dy. 
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It can easily be seen that this definition of yo(div ud) coincides with the one given by 
Lions and Magenes [10], which is based on Green's formula: 

(1.10) -(A(div Au),T)-1(u),Hi(u) + f div(A u )lwdx = Kyodiv u, yiw), 

where i is any function of q(R3), ip 1 near F and Y1yP is the second trace ap/anh of 
z E H2(S2) n Ho(0). In the same way, the definition of curl' A ', by (1.9), 

coincides with the one given by Duvaut and Lions [5] if curl curl ui belongs to LVoc( 2). 

1.2. The Boundary Value Problems. Let a tangential field c E THI/2(F) and 
g E H-1/2(P) be given. For a given positive real number k, it has previously been 
shown (cf. [1]), that the exterior problem 

(Find e E H' (A' i2e) such that 

Ae+k2 k 0 inSe 
(1.11) H e = c in TH1/2(F) 

|yodive = g in H-1/2(I) 

tcurl e A r/lr + (r/r) div e'-ike = o (l/r), 

has one and only one solution. We have used the following notations: ris the radius 
vector of the generic point x in R3, r its length and o(l/r), as usual, denotes a 
function going to zero faster than l/r when r tends to infinity uniformly with 
respect to the angular directions r/r. 

In [1], it has been proved also that, if k2 is not an eigenvalue of the interior 
problem (in the sequel, we shall always assume this hypothesis), the problem 

(Find e-E- H'(A 52i) 

(1.12) ~~~~ l\e + k e= in Q', 
(1 .12) Il e = c' in TH112 (F) 

yo div e' = g in H-1/2 (IF), 

has one and only one solution. Moreover, in this case, it is known that k2 is not an 
eigenvalue of the interior Dirichlet problem for the Laplace equation. 

The regularity properties of the solution of (1.11) and (1.12) are given by 

THEOREM 1.1. Let ui in H1'(A, 2) be such that, for s > 0, 

(1.13) ALUi E Ht (S2), t = max(O, s - 1), 

(1.14) HUe THS+l/2(F) 

(1.15) -y0div U e Hs-1/2(F) 

Then, 
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Proof. n' being the compactly supported extension of the normal to F, such that 
nl - 1 in a neighborhood of F, as was previously introduced, it is sufficient to show 
that 

(1.17) n A u E H+(0), 

(1.18) (ui, n-) E Hs?l(02). 

We shall prove this for 0 < s < 1. The rest of the proof is easily obtained in the 
same way, starting from this particular case. 

As a consequence of (1.13) and (1.14), we remark that 

(n A u e 1-(S2), 
(1.19) A ( d u) = n A /u + f 

,ib A ud= nh A H E-Hs+l/2(), 

where f is a function containing only partial derivatives of ud of order less than or 
equal to 1 multiplied by functions in 9(R3). It then follows that A(ni A u) is in 
L2( 2). The standard regularity results for elliptic problems (cf. e.g. [10]) then give 
(1.17). 

In the same way, we have 

(1.20) ( Au) E 

yl{(ui, n')) may then be defined in H-1/2(F) (cf. [10]). 
In a previous work (cf. [1]), we have established the relation 

(1.21) yodiv u = divr(HIu) + 2H(u, ni) + y1{(u, n)}, 

which holds if ui is in {(9(i2)}3 and can be extended by density to those ui in 

Ht1,J, l2). We have written H(x) for the mean curvature of F at the point x (i.e. 
the arithmetic mean of the eigenvalues of the curvature tensor). Thanks to (1.15) and 
(1.17), we have 

(1.22) y{u, n)E -/(r 

The classical results on elliptic problems then again lead to (1.18). 0 

2. The Integral Equation. In this section, we introduce the framework in which the 
variational equation (0.10) can be studied. 

2.1. Some Preliminary Lemmas. We shall always write [v] = vlint -vl text for the 
jump across F of the function or of the distribution v which is assumed to admit, in 
some sense, interior and exterior traces on F. 

PROPOSITION 2.1. Let afield u E L2,(R3) satisfy ui E H1(A, Qi) n HI (l' K2e) and 
Aui+ k2i = 0in Sl U Q Then we have: [Y1 div u7] is well defined in H32() and 

(2.1) [Y1 div u] = divr([curl u A n-]) -k2 [(u, n)] 
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Proof. div ui belongs to H0 (A, S2i) n HO? (A, K2e). Thus, its second trace may be 
defined in H-3/2(F) (cf. [10]). For T E 2(R3), (1.9) yields 

(2.2) fi{ (g ru, grad q ) + div ud Ap } dx 

= ( [curl u A n-], gradqr ) 1/2,1/2 + ([Yo div ufl, Y1>-1/2,1/2. 

Now, A div u + k2 div ui = 0 in O2' U Se also. Then Green's formula 

(2.3) | (/v, grad p) + A (div u) } dx = -k2f [(u, n)] i d-y 

holds in H(div, Qi) fn Hloc(div, D2e). 

Combining (2.2) and (2.3) and using again Green's formula, we obtain 

(2.4) ([y, div u], )-3/2,3/2 = -([curl u A n] gradr)-1/2,1/2 

-k 2 [(u-, n-)] if dy, 

which is (2.1) written in the sense of distributions. El 
Remark 2.2. We have thus obtained that the "conservation law" 

(2.5) divr ([curl u A ni]) = k2[(iu, n )] 

is equivalent to [yl div u] = 0. 
In the sequel, e will denote the field in LVlc(R3) defined almost everywhere by 

e|l e= solution of the exterior problem (1.11) and el,i = solution of the interior 
problem (1.12), assuming that g 0 in the following. We write 

(2.6) p = [curl e'A n] E 

(2.7) A = - n[( en)] E H 

Remark 2.3. If c = _ where ernC is the incident electric field, p and A are 
respectively related to the currentsj and charges p considered in the introduction, by 
p = iu,uj and A = p/e. O 

As a corollary of Proposition 2.1 and of the fact that div - 0 (cf. [1]) in a2i U Qe 
p and A are linked by the conservation law 

(2.8) divr - + k2A = 0. 

If c-is a smooth field (i.e. Cx), Theorem 1.1 yields 

~e E { coo(g')}3 n{ c* (Kle)}3. 

The representation of solutions of the Helmholtz equation satisfying the Sommerfeld 
radiation condition (cf. e.g. [15], [22]) gives 

(2.9) e(x) = -grad v(x) + d(x), for all x not on F, 

(2.10) v(x) = fG(x, y)A(y) dy(y), 
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(2.11) a(x) = JG(x, y)p(y) dy(y), 

where G(x, y) is Green's kernel given in (0.4). 
The classical potential relations (cf. e.g. [11]) enable us to write 

(2.12) c = -gradrv + Ha. 

Thus, if q is a smooth tangential field on F, Stokes formula 

(2.13) f(gradr v, q) dy + vdivr qdy = 0 

and the continuity equation (2.8) show that p is a solution of the following 
variational equation: 

Find a smooth tangential field p on F such that, 
for all q of the same type, 

(2.14) J G(x, ( -k2 divrp(y) divrq(x) + (P(y), q(x)) dy(y) dy(x) 

= c f((x), q(x)) dy(x). 

Our aim is now to formulate (2.14) in a framework adapted to the analysis 
developed subsequently. We set 

(2.15) H= TH-112(I) 

(2.16) X = {-p E H: divrp E H-1'2(F)}, 

(2.17) M= {1 E H-1/2(r); (,i1) = 0). 

All these spaces, equipped with their natural norms, are complex Hilbert spaces. It is 
easily seen, by standard techniques, that the infinitely differentiable elements 
constitute dense subspaces and that, for any p Ee X, divre E M. 

If X and Y are two Banach spaces, ?(X, Y) denotes the Banach space of all 
bounded linear operators from X into Y. 

LEMMA 2.4. The operator A definedfor infinitely differentiable E H by 

(2.18) Ap-(x) = Hf G(x, y)P-(y) dy(y) 

may be extended by continuity to an operator belonging to ?(H, H'). The problem 

(Find a E H1 (R3) such that 

(2.19) -(A+k2d ) = {a p} in?i(2), 
curl a A r/r +(r/r)diva - ika = o(1/r), 

has one and only one solution. We have denoted by { 'I} the distribution defined by 

(2.20) ( { for any E {- (RE ) } 

This solution leads to 

(2.21) [curlaA n] =p, 
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(2.22) Ap = Ial in H'. 
Moreover, A can be split into the sum 

(2.23) Ap = Ap + Rp, 

where ApY is defined for smooth p by 

(2.24) Ap5 = Hf Go(x, y) p(y) dy(y), 
1 

(2.25) Go(x, y) = 4 Ix-yl 

and satisfies the Nedelec-Planchard coerciveness inequality [14] 

(2.26) 3a > 0: (Apl, pl) >, a||,PI, 
2 

for allp-J in H, 
and R is a bounded linear operator acting from THS(F) into THs?+3(F) for all real s 
(cf. [7]). 

Proof. The standard results on pseudo-differential operators (cf. [7]) allow us to 
define A as a bounded operator from THS(F) into THs? (F) for all real s. 

The existence and uniqueness of the solution of (2.19) are obtained in the same 
way as in the scalar case (cf. [7]) by considering the intermediate problem 

fFind udE {EW(R)}3, E { W1(Rw)}3 

(2 .27) \i f (curl u, curl vC) + div u div v dx = (p, HII), 

where Wo(R3) is the space (cf. [12]) 

(2.28) Wol(R3) = {v E Ll2o(R3): (1 + r) v E L2(R3),gradv E L2(R3)). 

Moreover, its solution satisfies the variational relation 

(2.29) 1 {(a, v) +(curl a, curl v) + div a divv } dx = (pI, HJ) 

for all vJin {9(R3)}3. 
Green's formula (1.9) yields 

(2.30) ([curl a A fl, 11 I) + ([yodiva],f(v,)) = ( p ,l). 

Then we obtain (2.21) and 

(2.31) [yodiva] = 0. 

The property (2.22) is obtained from the fact that A and the operator associating 
Hial to pj are both bounded from H to H' and coincide on the dense subspace formed 
by smooth fields. The properties (2.23), (2.24) and (2.26) follow immediately from 
the results known in the scalar case (cf. [7], [12]). O 

LEMMA 2.5. Let C be the bounded operator from HS(F) into Hs?l(F) defined for 
smooth u by 

(2.32) Cu(x) = JG(x, y)u(y) dy(y). 
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Let pi E X and a' be the vector potential related to -* by the above lemma (i.e. by (2.19)). 
Then, in view of (2.31), we have 

(2.33) yo diva= Cdivrpj. 
Proof. If we set w = div a, the proof of the previous lemma yields 

(w E L2 

(2.34) Aw + k2w = 0 in f2i u 2e 

1[yow] = 0. 

Due to the fact that a E H1 (R3), Proposition 2.1 gives 

(2.35) [ylw] = divrp. 

Since a' satisfies the radiation condition, we can see (cf. [1]) that w is such that 

(2.36) aw - ikw = o ( 

Rellich's lemma (cf. [18]) and the results of [7] then give w E Hj1 (R3 ) and (2.33). 0 

LEMMA 2.6. The single layer potential 

(2.37) u(x) = JG(x, y)p(y) dy(y) 

created by a distribution of charges p in H1/2(r) defines an operator acting from 
H1/2(r) into TH1/2(r) by 

(2.38) gf (x) = grad u(x), x not lying on F, 
(2.38) 

H~~I-I-'= grad -F(-you) onfr. 

Proof. Standard results in potential theory (cf. e.g. [7]) give u E H2(gi2) fl H,2(Se). 
Thus, g is in H'(W') n HI (De). The property (2.38) follows since the tangential 
components of ' on r are related only to tangential derivatives of u. 0 

LEMMA 2.7. Let a continuous sesquilinearform on H-1/2(r) X X be defined by 

(2.39) b(p, q) = (Cp, divr q) - 

Then, p belongs to H'/2(F) if and only if there existsfE TH1f2(F) such that 

(2.40) b(p,q) +(f,)= O forallq E X. 

Moreover, in this case, we have 

(2.41) f= gradr(yOu), 

where u is defined by (2.37). 

Proof. If p E H1/2(r),then you E H3/2(F). Thus, (2.40) is only the definition of 
gradr(you) in the sense of distributions. Conversely, suppose that (2.40) is satisfied. 
It follows that gradr(you) E TH1/2(r) with you E H'/2(F). Hence, the properties 
of the Sobolev spaces (cf. [10]) yield you E H3/2(F). Standard regularity results on 
elliptic problems then give p E H1/2(r). 0 
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Remark 2.8. All the results given in the previous lemmas (2.5, 2.6, 2.7), can be 
transposed to the case where k = 0 (i.e. for the kernel Go(x, y) defined in (2.25)). In 
the sequel, we shall use these transpositions and give only essential features which 
differ from the case where k > 0. 

2.2. The Variational Equation. We can now give a precise formulation of the 
variational equation (2.14). Although this formulation is used to solve the problem 
numerically, the numerical analysis of the method cannot be based on it because, 
roughly speaking, X is not compactly embedded in H. That is the reason why we 
choose the following strategy. We use the fact that the operator C, defined for 
u E C(F) by 

(2.42) Cu(x) = fGo(x, y)u(y) dy(y) 

may be extended by continuity to an isomorphism from H-1/2(r) on H1/2(r). 

Moreover, it satisfies the coerciveness estimate 

(2.43) (Cu, u) _ aIIuII-1/2,r, for all u E 

It follows that C is M-elliptic and that the "conservation law" (2.8) may be 
equivalently written in the form 

(2.44) (Cp,divrp + k2A) = 0; Vp E M. 

We introduce the following bounded sesquilinear forms: 

(2.45) a( p, q) = (Ajl) ; p, q E H; 

(2.46) r(pl,q)= (Rp,); pjq, EH; 

(2.47) b(v,q)= (Cv,divrq); veM,qeX; 

(2.48) s(v, q) = (SP,divr4); P E M,4 q E X; S =C-C; 

(2.49) c(,u, v) = k2(Ci, v); , Ee M; v Ee M. 

As for R (cf. [7]), S operates from HS(r) into HS+3(r) for all real s. This 
improved regularity result (s + 3 instead of s + 2) has not played a great role in the 
scalar case (see [7]). It will be essential here. 

THEOREM 2.9. Let c' be given in H' = TH112(r); then (jp, A) defined by (2.6) and 
(2.7), is a solution of the variational equation 

(Find (p5 ,A) E X x Msuch that 

(2.50) p 5( q,)+b(A,q)= (c forallqeX, 
b b(v, q--) + c(A, v ) = for all v E- M. 

Conversely, if (jr, A) is a solution of the variational equation (2.50), then A E H1/2(r) 
and the field e defined in Qi u Qe by 

(2.51) e = -grad v + a', 

where a' and v are respectively the scalar and the vector potentials, related to A and j5 by 
(2.32) and (2.18), is a solution of the exterior problem (1.11) and the interior problem 
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(1.12) (with g = 0). In particular, since k2 is not an eigenvalue of the interior problem, 
problem (2.50) has at most one solution. 

Proof. Let (p, A) be defined by (2.6) and (2.7). From (2.8), A E M and p E X. 
Consider now a sequence of smooth tangential fields C' of F converging to c'in H. By 
the regularity results of Theorem 1.1, the related (j5, An) are smooth and satisfy 
(2.50) which is another way of writing (2.14). By a continuity argument, (p, A) is 
then a solution of (2.50). 

Conversely, if (p, A) is a solution of (2.50), Lemma 2.7 gives A E H1/2(F). Let ei 
be defined by (2.51). It is an easy consequence of Lemmas 2.4, 2.5, 2.6, 2.7, that e is 
a solution of the exterior problem (1.11) and of the interior problem (1.12). If c' = 0, 
then jeQ e= 0 and ei is a solution of the homogeneous interior problem. The 
hypothesis assuming that k2 is not an eigenvalue of the interior problem yields p = 0 
andA=0. D 

3. Fredholm Alternative for a Mixed Formulation. In the previous paragraph, we 
obtained the existence and uniqueness of the solution of the variational problem 
(2.50). But this will not be sufficient for the analysis we have in mind. In particular, 
we need some coercivity estimates which will be established now. The method 
proposed here will be easily adaptable for other problems of the same kind. In 
particular, our results can be applied to the mixed formulation of the Helmholtz 
equation in a bounded open set of R2 with Dirichlet conditions (see [6]). 

3.1. The Saddle Point Problem and Brezzi's Conditions. Let us define 

L = {A E H/2(r): A eM}. 

Endowed with the H1/2 norm, L is a closed subspace of H1/2(r). We then have 

THEOREM 3.1. Let (c', X) be given in H' x M'. The variationalproblem 

(Find(j5, A) E XX Msuch that 

(3.1) a a( p, q-) + b(A, q') = c, q) for all q' (= X, 

b(v,jp) = (X,v) for all v E M, 

has one and only one solution. Moreover, this solution is such that A E L, and if we set 

A( p, A) = (c, X) we define an (algebraic and topological) isomorphism from X X L 
onto H' X M'. 

The proof will be a consequence of the following lemma; 

LEMMA 3.2 ("inf-sup condition"): There exists a constant / > 0 such that 

(3.2) SUP ( liqll x IA,lq )|) M forallA(EEM. 

(In the sequel, it will be understood that a vector is not the zero vector whenever 
we divide by its norm.) 
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Proof. Let A be fixed in M. We define w in H1/2( F) via the solution of the 
problem (cf. [12]): 

fFind w Ee WJ'V(R3) such that 

(3.3) (gradwv,gradv)dx= (A,y0v) forallv e WO(R3), 

(3.4) w = ylw. 

Oe being connected, from a previous result (cf. [1]) we know that the interior 
problem 

(Find u E= V('i) such that 

(3.5) (1 {(curl ud,curl ) + div ud divu} dx = fw(n, v) dy for all vC E V( 0% 

has one and only one solution. We set 

(3.6) V(Q') = {u E H'(Q'); n A v = 0 on F}. 

Our aim is now to define ui in the exterior of Oi' by solving a problem similar to 
(3.5). But this needs some preparation. Let us write 
(3 7) 

jr(Qe) = {a E { W1(e)}3;A Oon} 

From [1], we can also deduce that there exists a constant C such that 

(3.8) IIvlI W02(u) < C{ IIcurl b1I0o,e + Ildiv 61Io,ae + IblIo.r 1} 

for all vCin V(Ske), and if vC E V(oe) satisfies 
(3.9) curlu = O in oe, 

(3.10) diva = O in oe, 

then there exists Tp E Wo(R3) satisfying T- constant in Oi' (here, for simplicity, we 
have made the nonessential assumption that iQ' is connected) such that 

(3.11) u =grad 9p in 0 e. 

It follows that Tp is proportional to the solution X of the exterior problem 

(Find X E Wo' (R3) such that 

(3.12) AX =0 in e Ui, 

Vx=i onF. 

By (3.8)-(3.12) and since the trace operator defines a compact operator from 
W1(Qe) into L2(r), the Peetre lemma (see [1] or a close version in [10]) implies that 
there exists a constant C such that 

(3.13) 11v11 wo(w) < C { Ilcurl 61Io,ae + lIdiv 61Io, e1, 

for all 'in V(Q e), where 

(3.14) V( e) = { JEt6) f(|i n) dy = 0}. 
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We have used the fact that the only element in V(U') satisfying (3.9) and (3.10) is 
the zero vector. 

Thus, the Lax-Milgram theorem insures that the problem 

Find utin V(2e) such that 

(3.15) (f | {(curl u', curl v) + div ut divv } dx = fw(n', v) dy for all v E V(SI2), 

has one and only one solution. 
Since 

f wan- dy=y (grad w, grad X) dx=-(A X), X-1, EM, 

it follows that we can take v E V(Q2e) in (3.15). Thus we can define ui E L- (R3) by: 
u'iiji is the solution of (3.5) and uii2 is the solution of (3.15). As A div ui = 0 in 
2e U 2i [mYO div U] and [yl div i] can be defined in H-1/2(r) and H-3/2(F), respec- 
tively (cf. [10]). From the definition of ui and Green's formula (1.9), we deduce 
yo div u] = 0 and yo div u= w. Proposition 2.1 gives [yl div u-i = divrq with q 

defined by 

(3.16) q= [curl u A n ] E TH-1/2(r). 

From the uniqueness of a single layer potential, it follows that q E X and 

(3.17) divr q = A. 

The Nedelec-Planchard coerciveness result (2.43) shows again that there exists a > 0 
such that 

(3.18) (CX,divr) > M 

It is clear that q depends continuously on X. It follows that there exists a constant 
, > 0, independent of X, and such that 

(3.19) b(X, 4) > ,IiXilmiqllx. 

This completes the proof of the lemma. 0 
Remark 3.3. As a consequence of the above proof, we obtain that ui satisfies 

(Au~ = 0 inSe U gi (A= in2e , 

(3.20) nAdu=0 onr, 
-yodiv u- = w E H'/2 

The regularity result given in Theorem 1.1 insures that ui E H2(Wi) n H2 (2e) 
and, then, that q4 E TH1/2(r). Thus, the previous proof indicates a way to associate 
4 E TH'/2(F) with - Ee X such that divr q = divr5, 4 depending continuously on 
This property will be fundamental for the numerical analysis which follows. 

M' is the quotient space Hl/2(F)/C. Clearly, for w E M', there is no trouble to 
say that w E H1/2(r), t> 1 

Proof of Theorem 3.1. First, it is clear that A E 2(X x L, H' X M') is given by 

(3.21) A( p, X) = (Ap - grad r CX, C divr p). 
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Since A is continuous, the Banach theorem insures that it will be a topological 
isomorphism if it is only an algebraic one. 

We set 

(3.22) V ={EX: b(,p) 0 V) EO M}. 

From the coerciveness inequality (2.43), it is clear that V may be equivalently 
defined by 

(3.23) V= {pEX; divr= 0}. 

It follows that V is a closed subspace of X and 

(3.24) IP1IX=IP1IH for allp E V. 

This property together with the coerciveness estimate (2.26) for the sesquilinear form 
a and the "inf-sup condition" (3.2) are the two conditions of Brezzi (cf. [3]) which 
insure the existence and uniqueness of a solution (p, X) to the "saddle-point" 
problem (3.1). As c E H', it follows from Lemma 2.1 that X E L. 

We have thus proved that A is surjective. From the uniqueness of the solution of 
problem (3.1), it immediately follows that A is also one-one. 

3.2. The Fredholm Alternative. 

COROLLARY 3.4. Let 8e E St X X L, H' X M') be defined by 

(3.25) 3(p, X) = (Rp - grad rSX, k2CX). 

Then 

(3.26) A + 83 is an (algebraic and topological) isomorphism 
from X X L onto H' X M'. 

Proof. Since 8 is bounded as an operator from X x L into TH5/2(r) x H3/2(r), 
it is a compact perturbation of the isomorphism A. The operator A + 8 is then a 
Fredholm operator of null index. We obtain (3.26) if we can prove that the first part 
of the Fredholm alternative holds. This clearly results from the uniqueness of the 
solution of the variational equation (2.50) (we recall that this is given by the 
assumption that k2 is not an eigenvalue of the interior problem). 

Let us give now a coerciveness estimate which will be essential in the numerical 
analysis we have in mind. Since 8 may be considered as an operator acting from 
H x M into TH3/2(r) x M' (here, the improved order of regularization of S is 
fundamental), we can introduce a bounded linear operator T E ?(H x M, H x M), 
defined by 

(3.27) T = I+ A-14 

where I is the identity operator. 

THEoREM 3.5. The operator T is an (algebraic and topological) isomorphism from 
H x M onto itself. We thus obtain the existence of a constant y > 0 such that 

(3.28) IIT(U, I) IIHxM > yII(UA u) IIHxM forall (u, u) E H X M. 

(The product of two Hilbert spaces is endowed with the Hilbertian norm.) 
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Proof. Let us first show that A-19 is a compact operator. To this end, let a 
sequence (CX)}n' N in H' x M' be such that 

(3.29) lim c' = c strongly in H', 

(3.30) lim Xn = X weakly in M'. 

For anyn E N,wedefine( ,A I )e Xx Lby 

(3.31) A(~b~~Pn n) = (,n, Xn) 

Theorem (3.1) then insures that 

(3.32) lim Pn = P weakly in X, 

(3.33) lim XA = X weakly in L, 

where ( p, X) is defined by 

(3.34) A(p, X) = (, X). 
Since L is compactly embedded in M, it follows that 

(3.35) lim Xn = X strongly in M. 

From the definition (3.1) of the operator A and the coerciveness estimate (2.26), we 
have 

(3.36) al 
2 

`-`b X (3.36) ~~~ aiP-ll H I CnC Pn-p) -IAnA Pn-P 
The strong convergences (3.29) and (3.35) yield 

(3.37) lim Pn = P strongly in H. 

Since TH3/2(r) is compactly embedded in H', we can then deduce that A-19 is 
compact. 

T is thus a Fredholm operator of null index. If (p, X) E H X M is such that 

(3.38) ( p, A) = -A-19(p, x), 
it must be in X x L and satisfies 

(3.39) (A + e)( p, X) = 0. 

The proof is achieved by Corollary 3.4, the first part of the Fredholm alternative 
and the bounded inverse theorem. [ 

Let us give now some regularity properties of the solution of problem (3.1). Those 
of problem (2.50) are identical and will not be repeated. 

THEOREM 3.6. Let (p, X) E X x L satisfy 

(3.40) A(1, )= (c,X) 

where, s being a nonnegative real number, 

(3.41) c E THl/2+s(IF) 

(3.42) x E Ht(F), t= max(2,-2 + s). 
Then, 

(3.43) pE= TH-l/2+s(), 

(3.44) A E H1/2+s 
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Proof. Let a and v be respectively the vector and the scalar potential related to 'p 
and X by the kernel Go given in (2.25). We define the field e in O2' U S' by 

(3.45) e= a- grad v. 

From Proposition 2.1 and Lemmas 2.4, 2.5, 2.6, 2.7, e satisfies 

A he( = ? in 2e U 'i, 
(3.46) n e-c onF, 

-yodive = X onF. 

The regularity properties (3.43) and (3.44) are then the consequences of Theorem 1.1 
in the case s > 1. In the case s = 0, they follow from the definition of the operator 
A. The intermediate case 0 < s < 1 is given by interpolation theory (cf. [10]). 

Final Remark 3.6. We have thus established the groundwork for the forthcoming 
numerical analysis. In order to avoid hypotheses which need to be introduced a 
priori, we chose not to give an "abstract" framework for our study. Nevertheless, we 
think the study can be adapted to other problems. In particular, the case of a mixed 
formulation of the Helmholtz equation in a bounded plane domain 02 (cf. [6]) is 
given by the choice M = L2(Q ), H = M2, X = H(div 02), L = Ho(2), and besides 
the usual choice of sesquilinear forms a and b, c is k2 times the scalar product of M, 
r and s being zero forms. 
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